TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear
نویسندگان
چکیده
In contrast to TP53, cancer development is rarely associated with mutations in the TP63 and TP73 genes. Recently, next generation sequencing analysis revealed that TP63 mutations are frequent, specifically in cutaneous melanomas. Cutaneous melanoma represents 4% of skin cancers but it is responsible for 80% of skin cancer related deaths. In the present study, we first determined whether all three members of the P53 family of transcription factors were found mutated in cutaneous melanomas by retrieving all TP53, TP63 and TP73 mutations from cBioPortal (http://www.cbioportal.org/). TP53 and TP63 were frequently mutated [15.0% (91/605) and 14.7% (89/605), respectively], while TP73 [1.5% (9/605)] was more rarely mutated (p<0.0001). A UV-mutation fingerprint was recognized for TP63 and TP73 genes. Then, we tried to evaluate the potential role of TP63 mutations as drivers or passengers in the tumorigenic process. In the former case, the amino acid substitutions should cause significant functional consequences on the main biochemical activity of the P63 protein, namely transactivation. The predicted effects of specific amino acid substitutions by two bioinformatics tools were rather different. Using a yeast-based functional assay, the observed hotspot mutant R379CP63 protein exhibited a substantial residual activity compared to the wild-type (>70%). This result does not support a major role of the mutant P63 protein in melanomagenesis while it is still consistent with the TP63 gene being a recorder of UV exposure. The TP63 mutation spectrum from cutaneous melanomas, when compared with that observed at the germinal level in patients affected by P63-associated diseases [ectodermal dysplasia syndromes, (EDs)], revealed significant differences. The TP63 mutations were more frequent at CpGs sites (p<0.0001) in EDs and at PyPy sites (p<0.0001) in cutaneous melanomas. The two spectra differed significantly (p<0.0001). We conclude that TP63 mutations are frequent in cutaneous melanoma, support UV etiology, but their role in melanomagenesis is unclear.
منابع مشابه
Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis.
Cutaneous malignant melanoma (CMM), already known for its highly aggressive behavior and resistance to conventional therapy, has evolved into a health crisis by virtue of a dramatic elevation in incidence. The underlying genetic basis for CMM, as well as the fundamental role for UV radiation in its etiology, is now widely accepted. However, the only bona fide genetic locus to emerge from extens...
متن کاملTERT Promoter Mutations Are Frequent in Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma
Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or...
متن کاملMolecular Bases of Cutaneous and Uveal Melanomas
Intensive research in recent years has begun to unlock the mysteries surrounding the molecular pathogenesis of melanoma, the deadliest of skin cancers. The high-penetrance, low-frequency susceptibility gene CDKN2A produces tumor suppressor proteins that function in concert with p53 and retinoblastoma protein to thwart melanomagenesis. Aberrant CDKN2A gene products have been implicated in a grea...
متن کاملThe Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis
UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth's surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. ...
متن کاملTopical Application of Thymidine Dinucleotide to Newborn Mice Reduces and Delays Development of Uv-induced Melanomas
One major risk factor for cutaneous melanoma is ultraviolet (UV) exposure. Intense intermittent UV exposure and childhood sunburn are linked epidemiologically with melanoma risk, and in mice neonatal UV exposure promotes development of cutaneous melanoma (Noonan et al., 2001; Kannan et al., 2003). Other evidence that UV contributes to melanomagenesis includes increased risk for populations with...
متن کامل